
Open-Source Software for Appraisal and
Processing of Email at Scale

Christopher (Cal) Lee

School of Information and Library Science

University of North Carolina at Chapel Hill

Society of American Archivists Research Forum
August 5, 2020

Motivation - Selection/Appraisal

• Despite progress on various technologies to support data management and
digital preservation, relatively little progress on software support for the core
activities of selection and appraisal

• Selection/appraisal decisions are based on various patterns

• When patterns can be identified algorithmically, software can assist the process

• LAMs frequently want to take actions that reflect contextual relationships

• Timeline representations and visualizations can also provide useful, high-level
views of materials

Motivation - Email

• About 50 years of email creation

• Hundreds of billions of messages
generated every day

• Most has little long-term retention
value, but some absolutely does

• Despite presence of numerous other
modalities, email still deeply
embedded in activities, serving as
massive source of evidence and
information

• Often found in collections and
acquisitions with other types of
materials

Review, Appraisal, and Triage of Mail
(RATOM)
• Funded by Andrew W. Mellon Foundation (2019-

2020)

• Developing and repurposing software (including
NLP and machine learning) for selection/appraisal
in BitCurator environment with hooks and
enhancements to TOMES output

• Support iterative processing - information
discovered at various points in the processing
workflow can support further selection, redaction
or description actions

• Mapping of timestamp, entity, sensitive features
and other elements across the tools

Ray Tomlinson
Implemented first email program on ARPANET.
Credited with invention of first email system.

Team Members

Cal Lee
PI

Antoine De Torcy
Software Engineer

Eliscia Kinder
Project Manager

Camille Tyndall Watson
Co-PI

Jamie Patrick-Burns
Investigator

Kam Woods
Technical Lead (UNC)

Sangeeta Desai
Technical Lead (NC DAR)

Caktus Group
Additional Software Development

Scope of the project

The RATOM project has several core development goals designed to serve the needs
of collecting institutions tasked with preparing email collections for public access:

• Development of an integrated Python library to simplify parsing and processing
PST, OST, and mbox email formats

• Development of utilities to support entity identification and export reports
suitable for conducting automated and human-directed redaction actions at
scale

• Development of an interface allowing processing archivists to browse email
collections and mark messages as suitable for retention

• Development of utilities to apply machine learning techniques (by training on
annotated message collections and/or unsupervised) to recognize candidate
materials for retention

Generating features that are:

facilitates understanding
changes in assessments of
materials over time.

RATOM tools - libratom

libratom (reusable library)

Python library to parse and analyze PST, OST,
and mbox email formats

Wraps functions from libpff, Python mailbox,
and spaCy (NLP)

Email message content, header, attachment
extraction; entity identification and
classification

Engineered to scale with core count and keep
memory use flat per-core

https://www.github.com/libratom/libratom

libpff

Open source digital
forensics email library

email,

multiprocessing

Core Python libraries

spaCy

Open source NLP platform

libratom

Scalable open source email
processing library

VERIFIABLE
REPRODUCIBLE

REUSABLE

sqlite3 databases and
derived reports

https://www.github.com/libratom/libratom

RATOM tools - Iterative Processing Interface
Assist archivists in reviewing email
materials for retention and/or release.

• Import of email accounts from
PSTs and entity identification via
libratom

• Creation of processing accounts
associated with individual email
users

• Interactive review and tagging of
email messages within these
accounts (e.g. “record”, “non-
record”, “redact”)

• Export of selected messages as
EML for retention or release

https://github.com/StateArchivesOfNorthCarolina/ratom-deploy

https://github.com/StateArchivesOfNorthCarolina/ratom-deploy

883381 | the Department of Environmental Protection | ORG | david_delainey_000_1_2.pst | 2325380
883382 | Cellucci| PERSON | david_delainey_000_1_2.pst | 2325380
883383 | the United States | GPE | david_delainey_000_1_2.pst | 2325380
883384 | five | CARDINAL | david_delainey_000_1_2.pst | 2325380
883385 | six | CARDINAL | david_delainey_000_1_2.pst | 2325380
883386 | Jane Swift | PERSON | david_delainey_000_1_2.pst | 2325380
883387 | the Department of Environmental Protection | ORG | david_delainey_000_1_2.pst | 2325380
883388 | six |CARDINAL | david_delainey_000_1_2.pst | 2325380
883389 | the next few months | DATE | david_delainey_000_1_2.pst | 2325380
883390 | 1.5 | CARDINAL | david_delainey_000_1_2.pst | w2325380
883391 | 3 pounds | QUANTITY | david_delainey_000_1_2.pst | 2325380
883392 | megawatt-hour | TIME | david_delainey_000_1_2.pst | 2325380
883393 | five | CARDINAL | david_delainey_000_1_2.pst | 2325380
883394 | Sithe Energies, Inc. | ORG | david_delainey_000_1_2.pst | 2325380

Model: Spacy en_core_web_sm, trained on OntoNotes 5, below stats for raw / no gold ref text:

With the current CLI, we can load different models (including user trained models) on demand for tasks / languages

libratom commands

entities command now provides more structured
and responsive feedback when progress is
requested (progress bars for both file and
message scans), performance improvements via
tuning of job distribution

model command provides granular control of
entity ident model(s) in use, including access to
previously released models

report command generates a fast report,
populating the sqlite3 schema without entities
(but optionally including message text and
headers)

emldump provides a mechanism for generating
EML files using JSON structured message id lists
produced by the web app (may also be used
standalone)

libratom output

Many updates as of 0.4.x...

Datetime stamps now extracted from message
header and stored in message table

Option to include all message text (stripped of
markup and inline attachments) and headers in
message table

MIME types for attachments now recorded in
attachment table; types are verified vs IANA
listed content types and subtypes

Various fixes and improvements (additional detail
in configuration, character encoding checks, etc)

See this chart in detail in the README at
https://github.com/libratom/libratom

libratom processing the Enron (EDRM v1.3) corpus

EDRM v1.3 Enron Corpus: Approximately 54GB, and includes
191 files, containing 758,341 messages

PST internal directory structure and message count scan:

16-core Threadripper 2950X: 1 minute
32-core Threadripper 3970X: 30 seconds

Entity extraction from all 750K messages (spaCy
en_core_web_sm model):

16-core Threadripper 2950X: 2 hrs
32-core Threadripper 3970X: 1 hr 15m

Memory usage is bounded for the spaCy configuration and
number of processes. For 32 processes, accessible memory is
~1.6GB/process, resident memory is ~500MB/process on
average.

In libratom 0.4.3 , this run yields a 3.8GB
sqlite3 file (including plaintext message
bodies), containing 18,548,102 entity
instances.

libratom processing the Jeb Bush corpus

Jeb Bush corpus: Approximately 7.2GB, includes 11 files
containing 251,509 messages

PST internal directory structure and message count scan:

16-core Threadripper 2950X: < 1 minute
32-core Threadripper 3970X: < 10 seconds

Entity extraction from all 252K messages (spaCy
en_core_web_sm model):

16-core Threadripper 2950X: ~48 minutes
32-core Threadripper 3970X: ~30 minutes

Memory usage is bounded for the spaCy configuration and
number of processes. For 32 processes, accessible memory is
~1.6GB/process, resident memory is ~500MB/process on
average.

In libratom 0.4.3 , this run yields a 798MB
sqlite3 file (including plaintext message
bodies), containing 7,655,587 entity
instances.

libratom processing the Gov. Kaine (Library of
Virginia) sample corpus

Kaine sample corpus: Approximately 12.3GB, includes 1 PST
file containing 79,538 messages

PST internal directory structure, message count, and
attachment scan:

16-core Threadripper 2950X: < 10 seconds
32-core Threadripper 3970X: < 5 seconds

Entity extraction from all 252K messages (spaCy
en_core_web_sm model):

16-core Threadripper 2950X: ~24 minutes
32-core Threadripper 3970X: ~15 minutes

Memory usage is bounded for the spaCy configuration and
number of processes. For 32 processes, accessible memory is
~1.6GB/process, resident memory is ~500MB/process on
average.

In libratom 0.4.3 , this run yields a 504MB
sqlite3 file (including plaintext message
bodies), containing 3,496,221 entity
instances.

A simple exploration of the Kaine sample

We can quickly examine
various slices of the db output
using a few simple SQL
queries...

Example 1:

Entity groups by type, ordered by
count.

sqlite> select count(*), label_ from entity group by label_ order by count(*)
DESC;
1288056|PERSON
686345|ORG
444841|DATE
362347|CARDINAL
257576|GPE
173187|TIME
60158|MONEY
32378|NORP
31311|ORDINAL
27683|FAC
27122|LOC
24327|PERCENT
23698|WORK_OF_ART
22738|PRODUCT
14511|LAW
11194|EVENT
8163|QUANTITY
586|LANGUAGE
sqlite>

A simple exploration of the Kaine sample

Example 2:

Individual text elements identified by
spaCy as "PERSON" that appear more
than 10,000 times

Note that the NLP processor will
return full names as entities; it just
happens that this particular group of
entities was mentioned independently
by first or last name a large number of
times in the collection.

Formatting quirks can also produce the
behavior - additional introspection into
the materials and experiments with
models other than the default model
would be needed to determine
whether this baseline performance
coulld be significantly improved.

(As an example - the “Gail” and
“Jaspen” elements here almost
certainly refer to the same person,
“Gail Jaspen”)

sqlite> select count(*), text from entity where label_ = 'PERSON' group by
text having count(*) > 10000 order by count(*) DESC;
41480|Gail
35978|Marilyn
29690|Jaspen
19033|Tavenner
18462|Bill
17264|Barbara
17077|Mark
13858|Wayne
13434|Brian
12723|Rubin
10933|Craig
10767|Leighty
10761|Burns
10371|Heidi
sqlite>

A simple exploration of the Kaine sample

Example 3:

Total number of attachments

Attachments by mime type, where
there are more than 100 of that
particular type

Note that given the total number of
attachments this means there is a very
long tail of additional attachment
types...although some of these are
variants of types that appear high in
the list (Word, JPG, etc)

sqlite> select count(*) from attachment;
42783

sqlite> select count(*), mime_type from attachment group by mime_type having
count(*) > 100 order by count(*) DESC;
23396|application/msword
4621|application/octet-stream
4355|application/vnd.ms-excel
3483|application/pdf
1833|image/jpeg
1685|image/gif
1363|application/vnd.ms-powerpoint
544|text/x-vcard
234|image/tiff
231|text/plain
179|text/html
136|application/msexcel
134|application/rtf
108|text/vcard

A simple exploration of the Kaine sample

Example 4:

We can use this db to explore data
that might be problematic for
processing further down the line. For
example:

All attachments with identical names
that appear in the collection more
than 100 times

sqlite> select count(*), name from attachment group by name having count(*) >
100;

303|Document.pdf

108|IQFormatFile.txt

161|Scan001.PDF

729|image001.gif

1005|image001.jpg

152|image002.gif

157|image002.jpg

sqlite>

Releases and Code Quality

Updates and improvements as of 0.4.x:

Releases have been generated in tandem with
tags on GitHub main branch, tracking all minor
and patch updates (currently 0.4.3).

All releases automatically pushed to PyPI.

Travis CI runs now performed using Python 3.6,
3.7, and 3.8

Codebase now tracked with codeclimate to assess
maintainability

Code coverage tracked via codecov (currently
95.47%) - effectively all core code is exercised by
the test suite

Routine dependency tree checks via dependabot

Code vulnerability/security checks via bandit

Many others...

Notebooks and examples

https://github.com/libratom/ratom-notebooks

Libratom is still in development, but as we
add and test new features we’re making some
of them available as Jupyter notebooks that
you can try out.

These Jupyter notebooks can be run in any
Jupyter Hub or Lab instance you choose, but
for convenience we’ve configured them to run
in a free hosted service - mybinder - in your
web browser.

Mybinder can create a Jupyter Hub instance
from any appropriately configured GitHub
repository.

Click the “Launch Binder” badge in the ratom-
notebooks repository to get started:

Note that mybinder is a free hosted service. Depending on the current load, it make take a few minutes for
the project to start. Be patient!

https://github.com/libratom/ratom-notebooks

RATOM tools - Iterative Processing Interface
Assist archivists in reviewing email
materials for retention and/or release.

• Import of email accounts from
PSTs and entity identification via
libratom

• Creation of processing accounts
associated with individual email
users

• Interactive review and tagging of
email messages within these
accounts (e.g. “record”, “non-
record”, “redact”)

• Export of selected messages as
EML for retention or release

https://github.com/StateArchivesOfNorthCarolina/ratom-deploy

https://github.com/StateArchivesOfNorthCarolina/ratom-deploy

Accounts View

Accounts associated
with imports of one or
more imported PST files
are displayed in the
main interface.

Account processing
indicates Complete
when all entity
identification and full-
text indexing has
finished.

Individual Account

Selecting an account
displays an infinite-scroll
view of individual
messages associated
with that account.

Green tags indicate
entity classes identified
during processing.

Status dropdown allows
messages to be marked
for retention or
redaction (also appears
in individual message
view).

Message View

Messages are tagged
during ingest using
categories associated
with entities identified in
the body text.

(Note: this research
dataset contains prior
annotations, resulting in
overtagging)

Tagging and Search

Selection by
classification (e.g.
record vs non-record)
and date range.

Audit History

Audit histories for
individual messages are
retained, ensuring a
clear record of initial
processing actions and
potential changes over
time.

Project info, news, and blog posts:

https://ratom.web.unc.edu/

Core library:

https://github.com/libratom/libratom

Sample Jupyter notebooks:

https://github.com/libratom/ratom-
notebooks

@RATOM_Project

https://ratom.web.unc.edu/
https://github.com/libratom/libratom
https://github.com/libratom/ratom-notebooks

